OCR MEI C4 (Core Mathematics 4)

Question 1
View details
1 You are given that \(\mathrm { f } ( x ) = \cos x + \lambda \sin x\) where \(\lambda\) is a positive constant.
  1. Express \(\mathrm { f } ( x )\) in the form \(R \cos ( x - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\), giving \(R\) and \(\alpha\) in terms of \(\lambda\).
  2. Given that the maximum value (as \(x\) varies) of \(\mathrm { f } ( x )\) is 2 , find \(R , \lambda\) and \(\alpha\), giving your answers in exact form.
Question 2
View details
2 Fig. 7 shows the curve BC defined by the parametric equations $$x = 5 \ln u , y = u + \frac { 1 } { u } , \quad 1 \leqslant u \leqslant 10$$ The point A lies on the \(x\)-axis and AC is parallel to the \(y\)-axis. The tangent to the curve at C makes an angle \(\theta\) with AC, as shown. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c443a5b6-247d-411d-8371-4d6ebd5c3489-1_505_583_1147_781} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the lengths \(\mathrm { OA } , \mathrm { OB }\) and AC .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(u\). Hence find the angle \(\theta\).
  3. Show that the cartesian equation of the curve is \(y = \mathrm { e } ^ { \frac { 1 } { 5 } x } + \mathrm { e } ^ { - \frac { 1 } { 5 } x }\). An object is formed by rotating the region OACB through \(360 ^ { \circ }\) about \(\mathrm { O } x\).
  4. Find the volume of the object.
Question 3
View details
3 A curve has parametric equations $$x = 2 \sin \theta , \quad y = \cos 2 \theta$$
  1. Find the exact coordinates and the gradient of the curve at the point with parameter \(\theta = \frac { 1 } { 3 } \pi\).
  2. Find \(y\) in terms of \(x\).
Question 4
View details
4 The parametric equations of a curve are $$x = \cos 2 \theta , \quad y = \sin \theta \cos \theta \quad \text { for } 0 \leqslant \theta < \pi$$ Show that the cartesian equation of the curve is \(x ^ { 2 } + 4 y ^ { 2 } = 1\).
Sketch the curve.
Question 5
View details
5 Part of the track of a roller-coaster is modelled by a curve with the parametric equations $$x = 2 \theta - \sin \theta , \quad y = 4 \cos \theta \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi .$$ This is shown in Fig. 8. B is a minimum point, and BC is vertical. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c443a5b6-247d-411d-8371-4d6ebd5c3489-3_598_1443_598_385} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the values of the parameter at A and B . Hence show that the ratio of the lengths OA and AC is \(( \pi - 1 ) : ( \pi + 1 )\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). Find the gradient of the track at A .
  3. Show that, when the gradient of the track is \(1 , \theta\) satisfies the equation $$\cos \theta - 4 \sin \theta = 2$$
  4. Express \(\cos \theta - 4 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\). Hence solve the equation \(\cos \theta - 4 \sin \theta = 2\) for \(0 \leqslant \theta \leqslant 2 \pi\).
Question 6
View details
6 A curve has parametric equations $$x = a t ^ { 3 } , \quad y = \frac { a } { 1 + t ^ { 2 } }$$ where \(a\) is a constant.
Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { - 2 } { 3 t \left( 1 + t ^ { 2 } \right) ^ { 2 } }\).
Hence find the gradient of the curve at the point \(\left( a , \frac { 1 } { 2 } a \right)\).
Question 7
View details
7 A curve has parametric equations \(x = 1 + u ^ { 2 } , y = 2 u ^ { 3 }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(u\).
  2. Hence find the gradient of the curve at the point with coordinates \(( 5,16 )\).
Question 8
View details
8 A curve is defined by parametric equations $$x = \frac { 1 } { t } - 1 , y = \frac { 2 + t } { 1 + t }$$ Show that the cartesian equation of the curve is \(y = \frac { 3 + 2 x } { 2 + x }\).