2 Fig. 7 shows the curve BC defined by the parametric equations
$$x = 5 \ln u , y = u + \frac { 1 } { u } , \quad 1 \leqslant u \leqslant 10$$
The point A lies on the \(x\)-axis and AC is parallel to the \(y\)-axis. The tangent to the curve at C makes an angle \(\theta\) with AC, as shown.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c443a5b6-247d-411d-8371-4d6ebd5c3489-1_505_583_1147_781}
\captionsetup{labelformat=empty}
\caption{Fig. 7}
\end{figure}
- Find the lengths \(\mathrm { OA } , \mathrm { OB }\) and AC .
- Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(u\). Hence find the angle \(\theta\).
- Show that the cartesian equation of the curve is \(y = \mathrm { e } ^ { \frac { 1 } { 5 } x } + \mathrm { e } ^ { - \frac { 1 } { 5 } x }\).
An object is formed by rotating the region OACB through \(360 ^ { \circ }\) about \(\mathrm { O } x\).
- Find the volume of the object.