OCR MEI C4 (Core Mathematics 4)

Question 1
View details
1 Fig. 3 shows the curve \(y = x ^ { 3 } + \sqrt { ( \sin x ) }\) for \(0 \leqslant x \leqslant \frac { \pi } { 4 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ce44db53-2ec8-497b-a1d5-a8adf85e3929-1_587_540_393_768} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Use the trapezium rule with 4 strips to estimate the area of the region bounded by the curve, the \(x\)-axis and the line \(x = \frac { \pi } { 4 }\), giving your answer to 3 decimal places.
  2. Suppose the number of strips in the trapezium rule is increased. Without doing further calculations, state, with a reason, whether the area estimate increases, decreases, or it is not possible to say.
Question 2
View details
2 Fig. 2 shows the curve \(y = \overline { 1 + x ^ { 2 } }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ce44db53-2ec8-497b-a1d5-a8adf85e3929-2_577_941_549_636} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure}
  1. The following table gives some values of \(x\) and \(y\).
    \(x\)00.250.50.751
    \(y\)11.03081.251.4142
    Find the missing value of \(y\), giving your answer correct to 4 decimal places. Hence show that, using the trapezium rule with four strips, the shaded area is approximately 1.151 square units.
  2. Jenny uses a trapezium rule with 8 strips, and obtains a value of 1.158 square units. Explain why she must have made a mistake.
  3. The shaded area is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the exact volume of the solid of revolution formed.
Question 3
View details
3 Fig. 4 shows the curve \(y = \sqrt { 1 + \mathrm { e } ^ { 2 x } }\), and the region between the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ce44db53-2ec8-497b-a1d5-a8adf85e3929-3_656_736_482_665} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Find the exact volume of revolution when the shaded region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
    1. Complete the table of values, and use the trapezium rule with 4 strips to estimate the area of the shaded region.
      \(x\)00.511.52
      \(y\)1.92832.89644.5919
    2. The trapezium rule for \(\int _ { 0 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { 2 x } } \mathrm {~d} x\) with 8 and 16 strips gives 6.797 and 6.823, although not necessarily in that order. Without doing the calculations, say which result is which, explaining your reasoning.
Question 4
View details
4
  1. Complete the table of values for the curve \(y = \sqrt { \cos x }\).
    \(X\)0\(\frac { \pi } { 8 }\)\(\frac { \pi } { 4 }\)\(\frac { 3 \pi } { 8 }\)\(\frac { \pi } { 2 }\)
    \(y\)0.96120.8409
    Hence use the trapezium rule with strip width \(h = \frac { \pi } { 8 }\) to estimate the value of the integral \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \sqrt { \cos x } \mathrm {~d} x\), giving your answer to 3 decimal places. Fig. 4 shows the curve \(y = \sqrt { \cos x }\) for \(0 \leqslant x \leqslant \frac { \pi } { 2 }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{ce44db53-2ec8-497b-a1d5-a8adf85e3929-4_459_751_799_638} \captionsetup{labelformat=empty} \caption{Fig. 4}
    \end{figure}
  2. State, with a reason, whether the trapezium rule with a strip width of \(\frac { \pi } { 16 }\) would give a larger or smaller estimate of the integral.
Question 5 2 marks
View details
5
  1. Use the trapezium rule with four strips to estimate \(\int _ { - 2 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x\), showing your working. Fig. 1 shows a sketch of \(y = \sqrt { 1 + \mathrm { e } ^ { x } }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{ce44db53-2ec8-497b-a1d5-a8adf85e3929-5_533_1074_441_565} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure}
  2. Suppose that the trapezium rule is used with more strips than in part (i) to estimate \(\int _ { - 2 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x\). State, with a reason but no further calculation, whether this would give a larger or smaller estimate.
    [0pt] [2]
Question 6
View details
6 Two students are trying to evaluate the integral \(\int _ { 1 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { - x } } \mathrm {~d} x\).
Sarah uses the trapezium rule with 2 strips, and starts by constructing the following table.
\(x\)11.52
\(\sqrt { 1 + \mathrm { e } ^ { - x } }\)1.16961.10601.0655
  1. Complete the calculation, giving your answer to 3 significant figures. Anish uses a binomial approximation for \(\sqrt { 1 + \mathrm { e } ^ { - x } }\) and then integrates this.
  2. Show that, provided \(\mathrm { e } ^ { - x }\) is suitably small, \(\left( 1 + \mathrm { e } ^ { - x } \right) ^ { \frac { 1 } { 2 } } \approx 1 + \frac { 1 } { 2 } \mathrm { e } ^ { - x } \quad \frac { 1 } { 8 } \mathrm { e } ^ { - 2 x }\).
  3. Use this result to evaluate \(\int _ { 1 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { - x } } \mathrm {~d} x\) approximately, giving your answer to 3 significant figures.