CAIE P3 2008 June — Question 3

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2008
SessionJune
TopicFixed Point Iteration

3
\includegraphics[max width=\textwidth, alt={}, center]{20893bfc-3300-4205-9d2c-729cc3243971-2_337_828_657_657} In the diagram, \(A B C D\) is a rectangle with \(A B = 3 a\) and \(A D = a\). A circular arc, with centre \(A\) and radius \(r\), joins points \(M\) and \(N\) on \(A B\) and \(C D\) respectively. The angle \(M A N\) is \(x\) radians. The perimeter of the sector \(A M N\) is equal to half the perimeter of the rectangle.
  1. Show that \(x\) satisfies the equation $$\sin x = \frac { 1 } { 4 } ( 2 + x ) \text {. }$$
  2. This equation has only one root in the interval \(0 < x < \frac { 1 } { 2 } \pi\). Use the iterative formula $$x _ { n + 1 } = \sin ^ { - 1 } \left( \frac { 2 + x _ { n } } { 4 } \right) ,$$ with initial value \(x _ { 1 } = 0.8\), to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.