7. (i) Show that ( \(2 x + 3\) ) is a factor of ( \(\left. 2 x ^ { 3 } - x ^ { 2 } + 4 x + 15 \right)\) and hence, simplify
$$\frac { 2 x ^ { 2 } + x - 3 } { 2 x ^ { 3 } - x ^ { 2 } + 4 x + 15 } .$$
(ii) Show that
$$\int _ { 2 } ^ { 5 } \frac { 2 x ^ { 2 } + x - 3 } { 2 x ^ { 3 } - x ^ { 2 } + 4 x + 15 } \mathrm {~d} x = \ln k$$
where \(k\) is an integer.