OCR C4 — Question 7

Exam BoardOCR
ModuleC4 (Core Mathematics 4)
TopicVectors 3D & Lines

7. Relative to a fixed origin, the points \(A\) and \(B\) have position vectors \(\left( \begin{array} { c } - 4
1
3 \end{array} \right)\) and \(\left( \begin{array} { c } - 3
6
1 \end{array} \right)\) respectively.
  1. Find a vector equation for the line \(l _ { 1 }\) which passes through \(A\) and \(B\). The line \(l _ { 2 }\) has vector equation $$\mathbf { r } = \left( \begin{array} { c } 3
    - 7
    9 \end{array} \right) + t \left( \begin{array} { c } 2
    - 3
    1 \end{array} \right)$$
  2. Show that lines \(l _ { 1 }\) and \(l _ { 2 }\) do not intersect.
  3. Find the position vector of the point \(C\) on \(l _ { 2 }\) such that \(\angle A B C = 90 ^ { \circ }\).