OCR C4 — Question 5

Exam BoardOCR
ModuleC4 (Core Mathematics 4)
TopicDifferential equations

  1. A bath is filled with hot water which is allowed to cool. The temperature of the water is \(\theta ^ { \circ } \mathrm { C }\) after cooling for \(t\) minutes and the temperature of the room is assumed to remain constant at \(20 ^ { \circ } \mathrm { C }\).
Given that the rate at which the temperature of the water decreases is proportional to the difference in temperature between the water and the room,
  1. write down a differential equation connecting \(\theta\) and \(t\). Given also that the temperature of the water is initially \(37 ^ { \circ } \mathrm { C }\) and that it is \(36 ^ { \circ } \mathrm { C }\) after cooling for four minutes,
  2. find, to 3 significant figures, the temperature of the water after ten minutes. Advice suggests that the temperature of the water should be allowed to cool to \(33 ^ { \circ } \mathrm { C }\) before a child gets in.
  3. Find, to the nearest second, how long a child should wait before getting into the bath.