OCR MEI FP1 2008 January — Question 9

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
Year2008
SessionJanuary
TopicLinear transformations

9 A transformation T acts on all points in the plane. The image of a general point P is denoted by \(\mathrm { P } ^ { \prime }\). \(\mathrm { P } ^ { \prime }\) always lies on the line \(y = x\) and has the same \(x\)-coordinate as P. This is illustrated in Fig. 9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{225bff01-f2c4-421f-ac91-c6a0fcb01e6f-4_807_825_402_660} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Write down the image of the point ( \(- 3,7\) ) under transformation T .
  2. Write down the image of the point \(( x , y )\) under transformation T .
  3. Find the \(2 \times 2\) matrix which represents the transformation.
  4. Describe the transformation M represented by the matrix \(\left( \begin{array} { r r } 0 & - 1
    1 & 0 \end{array} \right)\).
  5. Find the matrix representing the composite transformation of T followed by M .
  6. Find the image of the point \(( x , y )\) under this composite transformation. State the equation of the line on which all of these images lie.