OCR MEI FP1 2008 January — Question 8

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
Year2008
SessionJanuary
TopicComplex Numbers Argand & Loci

8
  1. On a single Argand diagram, sketch the locus of points for which
    (A) \(| z - 3 \mathrm { j } | = 2\),
    (B) \(\quad \arg ( z + 1 ) = \frac { 1 } { 4 } \pi\).
  2. Indicate clearly on your Argand diagram the set of points for which $$| z - 3 \mathrm { j } | \leqslant 2 \quad \text { and } \quad \arg ( z + 1 ) \leqslant \frac { 1 } { 4 } \pi .$$
  3. (A) By drawing an appropriate line through the origin, indicate on your Argand diagram the point for which \(| z - 3 j | = 2\) and \(\arg z\) has its minimum possible value.
    (B) Calculate the value of \(\arg z\) at this point.