CAIE P3 (Pure Mathematics 3) 2005 June

Question 1
View details
1 Expand \(( 1 + 4 x ) ^ { - \frac { 1 } { 2 } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), simplifying the coefficients.
Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{208eab3e-a78c-43b4-918f-a9efc9b4f47a-2_508_586_450_776} The diagram shows a sketch of the curve \(y = \frac { 1 } { 1 + x ^ { 3 } }\) for values of \(x\) from - 0.6 to 0.6 .
  1. Use the trapezium rule, with two intervals, to estimate the value of $$\int _ { - 0.6 } ^ { 0.6 } \frac { 1 } { 1 + x ^ { 3 } } \mathrm {~d} x$$ giving your answer correct to 2 decimal places.
  2. Explain, with reference to the diagram, why the trapezium rule may be expected to give a good approximation to the true value of the integral in this case.
Question 3
View details
3
  1. Solve the equation \(z ^ { 2 } - 2 \mathrm { i } z - 5 = 0\), giving your answers in the form \(x + \mathrm { i } y\) where \(x\) and \(y\) are real.
  2. Find the modulus and argument of each root.
  3. Sketch an Argand diagram showing the points representing the roots.
Question 4
View details
4
  1. Use the substitution \(x = \tan \theta\) to show that $$\int \frac { 1 - x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) ^ { 2 } } \mathrm {~d} x = \int \cos 2 \theta \mathrm {~d} \theta$$
  2. Hence find the value of $$\int _ { 0 } ^ { 1 } \frac { 1 - x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) ^ { 2 } } \mathrm {~d} x$$
Question 5
View details
5 The polynomial \(x ^ { 4 } + 5 x + a\) is denoted by \(\mathrm { p } ( x )\). It is given that \(x ^ { 2 } - x + 3\) is a factor of \(\mathrm { p } ( x )\).
  1. Find the value of \(a\) and factorise \(\mathrm { p } ( x )\) completely.
  2. Hence state the number of real roots of the equation \(\mathrm { p } ( x ) = 0\), justifying your answer.
Question 6
View details
6
  1. Prove the identity $$\cos 4 \theta + 4 \cos 2 \theta \equiv 8 \cos ^ { 4 } \theta - 3$$
  2. Hence solve the equation $$\cos 4 \theta + 4 \cos 2 \theta = 2$$ for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Question 7
View details
7
  1. By sketching a suitable pair of graphs, show that the equation $$\operatorname { cosec } x = \frac { 1 } { 2 } x + 1$$ where \(x\) is in radians, has a root in the interval \(0 < x < \frac { 1 } { 2 } \pi\).
  2. Verify, by calculation, that this root lies between 0.5 and 1 .
  3. Show that this root also satisfies the equation $$x = \sin ^ { - 1 } \left( \frac { 2 } { x + 2 } \right)$$
  4. Use the iterative formula $$x _ { n + 1 } = \sin ^ { - 1 } \left( \frac { 2 } { x _ { n } + 2 } \right)$$ with initial value \(x _ { 1 } = 0.75\), to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 8
View details
8
  1. Using partial fractions, find $$\int \frac { 1 } { y ( 4 - y ) } \mathrm { d } y$$
  2. Given that \(y = 1\) when \(x = 0\), solve the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = y ( 4 - y ) ,$$ obtaining an expression for \(y\) in terms of \(x\).
  3. State what happens to the value of \(y\) if \(x\) becomes very large and positive.
Question 9
View details
9
\includegraphics[max width=\textwidth, alt={}, center]{208eab3e-a78c-43b4-918f-a9efc9b4f47a-4_429_748_264_699} The diagram shows part of the curve \(y = \frac { x } { x ^ { 2 } + 1 }\) and its maximum point \(M\). The shaded region \(R\) is bounded by the curve and by the lines \(y = 0\) and \(x = p\).
  1. Calculate the \(x\)-coordinate of \(M\).
  2. Find the area of \(R\) in terms of \(p\).
  3. Hence calculate the value of \(p\) for which the area of \(R\) is 1 , giving your answer correct to 3 significant figures.
Question 10
View details
10 With respect to the origin \(O\), the points \(A\) and \(B\) have position vectors given by $$\overrightarrow { O A } = 2 \mathbf { i } + 2 \mathbf { j } + \mathbf { k } \quad \text { and } \quad \overrightarrow { O B } = \mathbf { i } + 4 \mathbf { j } + 3 \mathbf { k }$$ The line \(l\) has vector equation \(\mathbf { r } = 4 \mathbf { i } - 2 \mathbf { j } + 2 \mathbf { k } + s ( \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )\).
  1. Prove that the line \(I\) does not intersect the line through \(A\) and \(B\).
  2. Find the equation of the plane containing \(l\) and the point \(A\), giving your answer in the form \(a x + b y + c z = d\). \footnotetext{Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.
    University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }