11 With respect to the origin \(O\), the points \(P , Q , R , S\) have position vectors given by
$$\overrightarrow { O P } = \mathbf { i } - \mathbf { k } , \quad \overrightarrow { O Q } = - 2 \mathbf { i } + 4 \mathbf { j } , \quad \overrightarrow { O R } = 4 \mathbf { i } + 2 \mathbf { j } + \mathbf { k } , \quad \overrightarrow { O S } = 3 \mathbf { i } + 5 \mathbf { j } - 6 \mathbf { k } .$$
- Find the equation of the plane containing \(P , Q\) and \(R\), giving your answer in the form \(a x + b y + c z = d\).
- The point \(N\) is the foot of the perpendicular from \(S\) to this plane. Find the position vector of \(N\) and show that the length of \(S N\) is 7 .