OCR FP1 2006 June — Question 8

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
Year2006
SessionJune
Topic3x3 Matrices

8 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { l l l } a & 4 & 2
1 & a & 0
1 & 2 & 1 \end{array} \right)\).
  1. Find, in terms of \(a\), the determinant of \(\mathbf { M }\).
  2. Hence find the values of \(a\) for which \(\mathbf { M }\) is singular.
  3. State, giving a brief reason in each case, whether the simultaneous equations $$\begin{aligned} a x + 4 y + 2 z & = 3 a
    x + a y & = 1
    x + 2 y + z & = 3 \end{aligned}$$ have any solutions when
    (a) \(a = 3\),
    (b) \(a = 2\).