OCR FP1 2008 January — Question 9

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
Year2008
SessionJanuary
TopicRoots of polynomials

9
  1. Show that \(\alpha ^ { 3 } + \beta ^ { 3 } = ( \alpha + \beta ) ^ { 3 } - 3 \alpha \beta ( \alpha + \beta )\).
  2. The quadratic equation \(x ^ { 2 } - 5 x + 7 = 0\) has roots \(\alpha\) and \(\beta\). Find a quadratic equation with roots \(\alpha ^ { 3 }\) and \(\beta ^ { 3 }\).
  3. Show that \(\frac { 2 } { r } - \frac { 1 } { r + 1 } - \frac { 1 } { r + 2 } = \frac { 3 r + 4 } { r ( r + 1 ) ( r + 2 ) }\).
  4. Hence find an expression, in terms of \(n\), for $$\sum _ { r = 1 } ^ { n } \frac { 3 r + 4 } { r ( r + 1 ) ( r + 2 ) }$$
  5. Hence write down the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 3 r + 4 } { r ( r + 1 ) ( r + 2 ) }\).
  6. Given that \(\sum _ { r = N + 1 } ^ { \infty } \frac { 3 r + 4 } { r ( r + 1 ) ( r + 2 ) } = \frac { 7 } { 10 }\), find the value of \(N\).