A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q8
OCR FP1 2007 January — Question 8
Exam Board
OCR
Module
FP1 (Further Pure Mathematics 1)
Year
2007
Session
January
Topic
Sequences and series, recurrence and convergence
8
Show that \(( r + 2 ) ! - ( r + 1 ) ! = ( r + 1 ) ^ { 2 } \times r !\).
Hence find an expression, in terms of \(n\), for $$2 ^ { 2 } \times 1 ! + 3 ^ { 2 } \times 2 ! + 4 ^ { 2 } \times 3 ! + \ldots + ( n + 1 ) ^ { 2 } \times n ! .$$
State, giving a brief reason, whether the series $$2 ^ { 2 } \times 1 ! + 3 ^ { 2 } \times 2 ! + 4 ^ { 2 } \times 3 ! + \ldots$$ converges.
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10