CAIE P3 2002 June — Question 9

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2002
SessionJune
TopicComplex Numbers Argand & Loci

9 The complex number \(1 + i \sqrt { } 3\) is denoted by \(u\).
  1. Express \(u\) in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\). Hence, or otherwise, find the modulus and argument of \(u ^ { 2 }\) and \(u ^ { 3 }\).
  2. Show that \(u\) is a root of the equation \(z ^ { 2 } - 2 z + 4 = 0\), and state the other root of this equation.
  3. Sketch an Argand diagram showing the points representing the complex numbers \(i\) and \(u\). Shade the region whose points represent every complex number \(z\) satisfying both the inequalities $$| z - \mathrm { i } | \leqslant 1 \quad \text { and } \quad \arg z \geqslant \arg u .$$