A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q7
CAIE P1 2022 March — Question 7
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2022
Session
March
Topic
Reciprocal Trig & Identities
7
Show that \(\frac { \sin \theta + 2 \cos \theta } { \cos \theta - 2 \sin \theta } - \frac { \sin \theta - 2 \cos \theta } { \cos \theta + 2 \sin \theta } \equiv \frac { 4 } { 5 \cos ^ { 2 } \theta - 4 }\).
Hence solve the equation \(\frac { \sin \theta + 2 \cos \theta } { \cos \theta - 2 \sin \theta } - \frac { \sin \theta - 2 \cos \theta } { \cos \theta + 2 \sin \theta } = 5\) for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
This paper
(11 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11