OCR C4 2007 January — Question 10

Exam BoardOCR
ModuleC4 (Core Mathematics 4)
Year2007
SessionJanuary
TopicVectors 3D & Lines

10 The position vectors of the points \(P\) and \(Q\) with respect to an origin \(O\) are \(5 \mathbf { i } + 2 \mathbf { j } - 9 \mathbf { k }\) and \(4 \mathbf { i } + 4 \mathbf { j } - 6 \mathbf { k }\) respectively.
  1. Find a vector equation for the line \(P Q\). The position vector of the point \(T\) is \(\mathbf { i } + 2 \mathbf { j } - \mathbf { k }\).
  2. Write down a vector equation for the line \(O T\) and show that \(O T\) is perpendicular to \(P Q\). It is given that \(O T\) intersects \(P Q\).
  3. Find the position vector of the point of intersection of \(O T\) and \(P Q\).
  4. Hence find the perpendicular distance from \(O\) to \(P Q\), giving your answer in an exact form.