OCR MEI C3 (Core Mathematics 3)

Question 1
View details
1 Fig. 8 shows the line \(y = 1\) and the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { ( x - 2 ) ^ { 2 } } { x }\). The curve touches the \(x\)-axis at \(\mathrm { P } ( 2,0 )\) and has another turning point at the point Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d1206ce8-7716-4205-b98e-664e7ead8a25-1_961_1473_445_320} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = 1 - \frac { 4 } { x ^ { 2 } }\), and find \(\mathrm { f } ^ { \prime \prime } ( x )\). Hence find the coordinates of Q and, using \(\mathrm { f } ^ { \prime \prime } ( x )\), verify that it is a maximum point.
  2. Verify that the line \(y = 1\) meets the curve \(y = \mathrm { f } ( x )\) at the points with \(x\)-coordinates 1 and 4 . Hence find the exact area of the shaded region enclosed by the line and the curve. The curve \(y = \mathrm { f } ( x )\) is now transformed by a translation with vector \(\binom { - 1 } { - 1 }\). The resulting curve has equation \(y = \mathrm { g } ( x )\).
  3. Show that \(\mathrm { g } ( x ) = \frac { x ^ { 2 } - 3 x } { x + 1 }\).
  4. Without further calculation, write down the value of \(\int _ { 0 } ^ { 3 } \mathrm {~g} ( x ) \mathrm { d } x\), justifying your answer.
Question 2
View details
2 Fig. 9 shows the curve \(y = x \mathrm { e } ^ { - 2 x }\) together with the straight line \(y = m x\), where \(m\) is a constant, with \(0 < m < 1\). The curve and the line meet at O and P . The dashed line is the tangent at P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d1206ce8-7716-4205-b98e-664e7ead8a25-2_433_979_472_591} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that the \(x\)-coordinate of P is \(- \frac { 1 } { 2 } \ln m\).
  2. Find, in terms of \(m\), the gradient of the tangent to the curve at P . You are given that OP and this tangent are equally inclined to the \(x\)-axis.
  3. Show that \(m = \mathrm { e } ^ { - 2 }\), and find the exact coordinates of P .
  4. Find the exact area of the shaded region between the line OP and the curve. END OF QUESTION PAPER
Question 3
View details
3
  1. Use the substitution \(u = 1 + x\) to show that $$\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x = \int _ { a } ^ { b } \left( u ^ { 2 } - 3 u + 3 - \frac { 1 } { u } \right) \mathrm { d } u$$ where \(a\) and \(b\) are to be found.
    Hence evaluate \(\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x\), giving your answer in exact form. Fig. 8 shows the curve \(y = x ^ { 2 } \ln ( 1 + x )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d1206ce8-7716-4205-b98e-664e7ead8a25-3_830_806_907_706} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure}
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Verify that the origin is a stationary point of the curve.
  3. Using integration by parts, and the result of part (i), find the exact area enclosed by the curve \(y = x ^ { 2 } \ln ( 1 + x )\), the \(x\)-axis and the line \(x = 1\).