OCR MEI C3 (Core Mathematics 3)

Question 1
View details
1 Fig. 8 shows part of the curve \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = \left( \mathrm { e } ^ { x } - 1 \right) ^ { 2 } \text { for } x \geqslant 0 .$$ \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6555136d-0444-41f6-9063-21960352089d-1_705_864_525_635} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\mathrm { f } ^ { \prime } ( x )\), and hence calculate the gradient of the curve \(y = \mathrm { f } ( x )\) at the origin and at the point \(( \ln 2,1 )\). The function \(\mathrm { g } ( x )\) is defined by $$\sqrt { } \text { for } x \geqslant 0 \text {. }$$
  2. Show that \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are inverse functions. Hence sketch the graph of \(y = \mathrm { g } ( x )\). Write down the gradient of the curve \(y = \mathrm { g } ( x )\) at the point \(( 1 , \ln 2 )\).
  3. Show that \(\int \left( \mathrm { e } ^ { x } 1 \right) ^ { 2 } \mathrm {~d} x = \frac { 1 } { 2 } \mathrm { e } ^ { 2 x } \quad 2 \mathrm { e } ^ { x } + x + c\). Hence evaluate \(\int _ { 0 } ^ { \ln 2 } \left( \mathrm { e } ^ { x } \quad 1 \right) ^ { 2 } \mathrm {~d} x\), giving your answer in an exact form.
  4. Using your answer to part (iii), calculate the area of the region enclosed by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis and the line \(x = 1\).
Question 2
View details
2 Fig. 6 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \arctan x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6555136d-0444-41f6-9063-21960352089d-2_388_727_434_701} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find the range of the function \(\mathrm { f } ( x )\), giving your answer in terms of \(\pi\).
  2. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\). Find the gradient of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the origin.
  3. Hence write down the gradient of \(y = \frac { 1 } { 2 } \arctan x\) at the origin.
Question 3
View details
3 The function \(f ( x ) = \ln \left( 1 + x ^ { 2 } \right)\) has domain \(- 3 \leqslant x \leqslant 3\).
Fig. 9 shows the graph of \(y = f ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6555136d-0444-41f6-9063-21960352089d-3_495_867_519_607} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure} (1) Show algebraically that the function is even. State how this property relates to the shape of the curve.
(ii) Find the gradient of the curve at the point \(\mathrm { P } ( 2 , \ln 5 )\).
(iii) Explain why the function does not have an inverse for the domain \(- 3 \leqslant x \leqslant 3\). The domain of \(f ( x )\) is now restricted to \(0 \leqslant x \leqslant 3\). The inverse of \(f ( x )\) is the function \(g ( x )\),
(iv) Sketch the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\) on the same axes. State the domain of the function \(g ( x )\).
Show that \(\mathrm { g } ( x ) = \sqrt { \mathrm { e } ^ { x } - 1 }\).
(v) Differentiate \(\mathrm { g } ( x )\). Hence verify that \(\mathrm { g } ^ { \prime } ( \ln 5 ) = 1 \frac { 1 } { 4 }\). Explain the commection between this result and your answer to part (ii).