2.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{698b44b5-801c-45ec-b9de-021e44487edb-04_723_636_219_733}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
A particle \(P\) of mass \(m\) is attached to one end of a light inextensible string. The other end of the string is attached to a fixed point \(A\). The particle moves in a horizontal circle with constant angular speed \(\sqrt { 58.8 } \mathrm { rad } \mathrm { s } ^ { - 1 }\). The centre \(O\) of the circle is vertically below \(A\) and the string makes a constant angle \(\theta ^ { \circ }\) with the downward vertical, as shown in Figure 2.
Given that the tension in the string is 1.2 mg , find
- the value of \(\theta\)
- the length of the string.