OCR C3 Specimen — Question 9

Exam BoardOCR
ModuleC3 (Core Mathematics 3)
SessionSpecimen
TopicReciprocal Trig & Identities

9
\includegraphics[max width=\textwidth, alt={}, center]{b6b6e55a-a5ba-466c-ac9f-b5ef5bca7a3c-4_424_707_1260_724} The diagram shows the curve \(y = \tan ^ { - 1 } x\) and its asymptotes \(y = \pm a\).
  1. State the exact value of \(a\).
  2. Find the value of \(x\) for which \(\tan ^ { - 1 } x = \frac { 1 } { 2 } a\). The equation of another curve is \(y = 2 \tan ^ { - 1 } ( x - 1 )\).
  3. Sketch this curve on a copy of the diagram, and state the equations of its asymptotes in terms of \(a\).
  4. Verify by calculation that the value of \(x\) at the point of intersection of the two curves is 1.54 , correct to 2 decimal places. Another curve (which you are not asked to sketch) has equation \(y = \left( \tan ^ { - 1 } x \right) ^ { 2 }\).
  5. Use Simpson's rule, with 4 strips, to find an approximate value for \(\int _ { 0 } ^ { 1 } \left( \tan ^ { - 1 } x \right) ^ { 2 } \mathrm {~d} x\).