Edexcel M2 2004 June — Question 7

Exam BoardEdexcel
ModuleM2 (Mechanics 2)
Year2004
SessionJune
TopicWork, energy and Power 1

7. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{8e694174-b9a9-4018-8896-31a3b4f0d344-5_424_1324_264_383}
\end{figure} In a ski-jump competition, a skier of mass 80 kg moves from rest at a point \(A\) on a ski-slope. The skier's path is an arc \(A B\). The starting point \(A\) of the slope is 32.5 m above horizontal ground. The end \(B\) of the slope is 8.1 m above the ground. When the skier reaches \(B\), she is travelling at \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), and moving upwards at an angle \(\alpha\) to the horizontal, where \(\tan \alpha = \frac { 3 } { 4 }\), as shown in Fig. 2. The distance along the slope from \(A\) to \(B\) is 60 m . The resistance to motion while she is on the slope is modelled as a force of constant magnitude \(R\) newtons. By using the work-energy principle,
  1. find the value of \(R\). On reaching \(B\), the skier then moves through the air and reaches the ground at the point \(C\). The motion of the skier in moving from \(B\) to \(C\) is modelled as that of a particle moving freely under gravity.
  2. Find the time for the skier to move from \(B\) to \(C\).
  3. Find the horizontal distance from \(B\) to \(C\).
  4. Find the speed of the skier immediately before she reaches \(C\). END