4. At time \(t\) seconds, the velocity of a particle \(P\) is \([ ( 4 t - 7 ) \mathbf { i } - 5 \mathbf { j } ] \mathrm { m } \mathrm { s } ^ { - 1 }\). When \(t = 0 , P\) is at the point with position vector \(( 3 \mathbf { i } + 5 \mathbf { j } ) \mathrm { m }\) relative to a fixed origin \(O\).
- Find an expression for the position vector of \(P\) after \(t\) seconds, giving your answer in the form \(( a \mathbf { i } + b \mathbf { j } ) \mathrm { m }\).
A second particle \(Q\) moves with constant velocity \(( 2 \mathbf { i } - 3 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\). When \(t = 0\), the position vector of \(Q\) is \(( - 7 \mathrm { i } ) \mathrm { m }\).
- Prove that \(P\) and \(Q\) collide.