Edexcel M2 2013 January — Question 5

Exam BoardEdexcel
ModuleM2 (Mechanics 2)
Year2013
SessionJanuary
TopicWork, energy and Power 2

5. The point \(A\) lies on a rough plane inclined at an angle \(\theta\) to the horizontal, where \(\sin \theta = \frac { 24 } { 25 }\). A particle \(P\) is projected from \(A\), up a line of greatest slope of the plane, with speed \(U \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The mass of \(P\) is 2 kg and the coefficient of friction between \(P\) and the plane is \(\frac { 5 } { 12 }\). The particle comes to instantaneous rest at the point \(B\) on the plane, where \(A B = 1.5 \mathrm {~m}\). It then moves back down the plane to \(A\).
  1. Find the work done against friction as \(P\) moves from \(A\) to \(B\).
  2. Use the work-energy principle to find the value of \(U\).
  3. Find the speed of \(P\) when it returns to \(A\).