4. At time \(t\) seconds the velocity of a particle \(P\) is \([ ( 4 t - 5 ) \mathbf { i } + 3 \mathbf { j } ] \mathrm { m } \mathrm { s } ^ { - 1 }\). When \(t = 0\), the position vector of \(P\) is \(( 2 \mathbf { i } + 5 \mathbf { j } ) \mathrm { m }\), relative to a fixed origin \(O\).
- Find the value of \(t\) when the velocity of \(P\) is parallel to the vector \(\mathbf { j }\).
- Find an expression for the position vector of \(P\) at time \(t\) seconds.
A second particle \(Q\) moves with constant velocity \(( - 2 \mathbf { i } + c \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\). When \(t = 0\), the position vector of \(Q\) is \(( 11 \mathbf { i } + 2 \mathbf { j } ) \mathrm { m }\). The particles \(P\) and \(Q\) collide at the point with position vector ( \(d \mathbf { i } + 14 \mathbf { j }\) ) m.
- Find
- the value of \(c\),
- the value of \(d\).