A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q8
CAIE P2 2011 June — Question 8
Exam Board
CAIE
Module
P2 (Pure Mathematics 2)
Year
2011
Session
June
Topic
Reciprocal Trig & Identities
8
Prove that \(\sin ^ { 2 } 2 \theta \left( \operatorname { cosec } ^ { 2 } \theta - \sec ^ { 2 } \theta \right) \equiv 4 \cos 2 \theta\).
Hence
(a) solve for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\) the equation \(\sin ^ { 2 } 2 \theta \left( \operatorname { cosec } ^ { 2 } \theta - \sec ^ { 2 } \theta \right) = 3\),
(b) find the exact value of \(\operatorname { cosec } ^ { 2 } 15 ^ { \circ } - \sec ^ { 2 } 15 ^ { \circ }\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
6
Q6
Q7
Q8