Edexcel M2 2022 October — Question 5

Exam BoardEdexcel
ModuleM2 (Mechanics 2)
Year2022
SessionOctober
TopicMoments

5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1732eb73-8c16-4a45-8d3b-a88e659e47ea-12_424_1118_221_420} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A uniform rod \(A B\) has length \(8 a\) and weight \(W\).
The end \(A\) of the rod is freely hinged to horizontal ground.
The rod rests in equilibrium against a block which is also fixed to the ground.
The block is modelled as a smooth solid hemisphere with radius \(2 a\) and centre \(D\).
The point of contact between the rod and the block is \(C\), where \(A C = 5 a\)
The rod is at an angle \(\theta\) to the ground, as shown in Figure 1.
Points \(A , B , C\) and \(D\) all lie in the same vertical plane.
  1. Show that \(A D = \sqrt { 29 } a\)
  2. Show that the magnitude of the normal reaction at \(C\) between the rod and the block is \(\frac { 4 } { \sqrt { 29 } } W\) The resultant force acting on the rod at \(A\) has magnitude \(k W\) and acts at an angle \(\alpha\) to the ground.
  3. Find (i) the exact value of \(k\)
    (ii) the exact value of \(\tan \alpha\)
    \includegraphics[max width=\textwidth, alt={}, center]{1732eb73-8c16-4a45-8d3b-a88e659e47ea-15_72_1819_2709_114}