7. Three particles \(A\), \(B\) and \(C\) have masses \(2 m , 3 m\) and \(4 m\) respectively. The particles lie at rest in a straight line on a smooth horizontal surface, with \(B\) between \(A\) and \(C\). Particle \(A\) is projected towards \(B\) with speed \(u\) and collides directly with \(B\). The coefficient of restitution between \(A\) and \(B\) is \(e\). The kinetic energy of \(A\) immediately after the collision is one ninth of the kinetic energy of \(A\) immediately before the collision.
Given that the direction of motion of \(A\) is unchanged by the collision,
- find the value of \(e\).
After the collision between \(A\) and \(B\) there is a direct collision between \(B\) and \(C\). The coefficient of restitution between \(B\) and \(C\) is \(f\), where \(f < \frac { 3 } { 4 }\). The speed of \(B\) immediately after the collision with \(C\) is \(V\).
- Express \(V\) in terms of \(f\) and \(u\).
- Hence show that there will be a second collision between \(A\) and \(B\).