8. (i) Solve the equation
$$\pi - 3 \cos ^ { - 1 } \theta = 0$$
(ii) Sketch on the same diagram the curves \(y = \cos ^ { - 1 } ( x - 1 ) , 0 \leq x \leq 2\) and \(y = \sqrt { x + 2 } , x \geq - 2\).
Given that \(\alpha\) is the root of the equation
$$\cos ^ { - 1 } ( x - 1 ) = \sqrt { x + 2 }$$
(iii) show that \(0 < \alpha < 1\),
(iv) use the iterative formula
$$x _ { n + 1 } = 1 + \cos \sqrt { x _ { n } + 2 }$$
with \(x _ { 0 } = 1\) to find \(\alpha\) correct to 3 decimal places.
You should show the result of each iteration.