OCR C3 (Core Mathematics 3)

Question 1
View details
  1. Use Simpson's rule with four strips to estimate the value of the integral
$$\int _ { 0 } ^ { 3 } \mathrm { e } ^ { \cos x } \mathrm {~d} x$$
Question 2
View details
  1. Giving your answers to 1 decimal place, solve the equation
$$5 \tan ^ { 2 } 2 \theta - 13 \sec 2 \theta = 1 ,$$ for \(\theta\) in the interval \(0 \leq \theta \leq 360 ^ { \circ }\).
Question 3
View details
3.
\includegraphics[max width=\textwidth, alt={}, center]{14ec6709-e1cb-42d7-af99-91365e50e4fc-1_535_810_877_406} The diagram shows the curve \(y = \mathrm { f } ( x )\) which has a maximum point at \(( - 3,2 )\) and a minimum point at \(( 2 , - 4 )\).
  1. Showing the coordinates of any stationary points, sketch on separate diagrams the graphs of
    1. \(y = | \mathrm { f } ( x ) |\),
    2. \(y = 3 \mathrm { f } ( 2 x )\).
  2. Write down the values of the constants \(a\) and \(b\) such that the curve with equation \(y = a + \mathrm { f } ( x + b )\) has a minimum point at the origin \(O\).
Question 4
View details
4. Find the values of \(x\) in the interval \(- 180 < x < 180\) for which $$\tan ( x + 45 ) ^ { \circ } - \tan x ^ { \circ } = 4 ,$$ giving your answers to 1 decimal place.
Question 5
View details
5. The finite region \(R\) is bounded by the curve with equation \(y = \sqrt [ 3 ] { 3 x - 1 }\), the \(x\)-axis and the lines \(x = \frac { 2 } { 3 }\) and \(x = 3\).
  1. Find the area of \(R\).
  2. Find, in terms of \(\pi\), the volume of the solid formed when \(R\) is rotated through four right angles about the \(x\)-axis.
Question 6
View details
6. The functions \(f\) and \(g\) are defined by $$\begin{aligned} & \mathrm { f } : x \rightarrow 1 - a x , \quad x \in \mathbb { R }
& \mathrm {~g} : x \rightarrow x ^ { 2 } + 2 a x + 2 , \quad x \in \mathbb { R } \end{aligned}$$ where \(a\) is a constant.
Find, in terms of \(a\),
  1. an expression for \(\mathrm { f } ^ { - 1 } ( x )\),
  2. the range of g . Given that \(g f ( 3 ) = 7\),
  3. find the two possible values of \(a\).
Question 7
View details
7. The curve with equation \(y = x ^ { \frac { 5 } { 2 } } \ln \frac { x } { 4 } , x > 0\) crosses the \(x\)-axis at the point \(P\).
  1. Write down the coordinates of \(P\). The normal to the curve at \(P\) crosses the \(y\)-axis at the point \(Q\).
  2. Find the area of triangle \(O P Q\) where \(O\) is the origin. The curve has a stationary point at \(R\).
  3. Find the \(x\)-coordinate of \(R\) in exact form.
Question 8
View details
8. (i) Solve the equation $$\pi - 3 \cos ^ { - 1 } \theta = 0$$ (ii) Sketch on the same diagram the curves \(y = \cos ^ { - 1 } ( x - 1 ) , 0 \leq x \leq 2\) and \(y = \sqrt { x + 2 } , x \geq - 2\). Given that \(\alpha\) is the root of the equation $$\cos ^ { - 1 } ( x - 1 ) = \sqrt { x + 2 }$$ (iii) show that \(0 < \alpha < 1\),
(iv) use the iterative formula $$x _ { n + 1 } = 1 + \cos \sqrt { x _ { n } + 2 }$$ with \(x _ { 0 } = 1\) to find \(\alpha\) correct to 3 decimal places.
You should show the result of each iteration.
Question 9
View details
9. The number of bacteria present in a culture at time \(t\) hours is modelled by the continuous variable \(N\) and the relationship $$N = 2000 \mathrm { e } ^ { k t }$$ where \(k\) is a constant.
Given that when \(t = 3 , N = 18000\), find
  1. the value of \(k\) to 3 significant figures,
  2. how long it takes for the number of bacteria present to double, giving your answer to the nearest minute,
  3. the rate at which the number of bacteria is increasing when \(t = 3\).