In another game, played with an ordinary fair die and counters, Betty needs to throw a six to start.
The probability \(\mathrm { P } _ { n }\) of Betty starting on her \(n\)th throw is given by
$$P _ { n } = \frac { 1 } { 6 } \times \left( \frac { 5 } { 6 } \right) ^ { n - 1 }$$
Calculate \(\mathrm { P } _ { 4 }\). Give your answer as a fraction.
The values \(\mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } , \ldots\) form an infinite geometric progression. State the first term and the common ratio of this progression.
Hence show that \(\mathrm { P } _ { 1 } + \mathrm { P } _ { 2 } + \mathrm { P } _ { 3 } + \ldots = 1\).
Given that \(\mathrm { P } _ { n } < 0.001\), show that \(n\) satisfies the inequality
$$n > \frac { \log _ { 10 } 0.006 } { \log _ { 10 } \left( \frac { 5 } { 6 } \right) } + 1$$
Hence find the least value of \(n\) for which \(\mathrm { P } _ { n } < 0.001\).