OCR MEI C2 (Core Mathematics 2)

Question 1
View details
1
  1. In a 'Make Ten' quiz game, contestants get \(\pounds 10\) for answering the first question correctly, then a further \(\pounds 20\) for the second question, then a further \(\pounds 30\) for the third, and so on, until they get a question wrong and are out of the game.
    (A) Haroon answers six questions correctly. Show that he receives a total of \(\pounds 210\).
    (B) State, in a simple form, a formula for the total amount received by a contestant who answers \(n\) questions correctly. Hence find the value of \(n\) for a contestant who receives \(\pounds 10350\) from this game.
  2. In a 'Double Your Money' quiz game, contestants get \(\pounds 5\) for answering the first question correctly, then a further \(\pounds 10\) for the second question, then a further \(\pounds 20\) for the third, and so on doubling the amount for each question until they get a question wrong and are out of the game.
    (A) Gary received \(\pounds 75\) from the game. How many questions did he get right?
    (B) Bethan answered 9 questions correctly. How much did she receive from the game?
    (C) State a formula for the total amount received by a contestant who answers \(n\) questions correctly. Hence find the value of \(n\) for a contestant in this game who receives \(\pounds 2621435\).
Question 2
View details
2 The first term of a geometric series is 5.4 and the common ratio is 0.1.
  1. Find the fourth term of the series.
  2. Find the sum to infinity of the series.
Question 3
View details
3 The 11th term of an arithmetic progression is 1. The sum of the first 10 terms is 120. Find the 4th term.
Question 4
View details
4
  1. André is playing a game where he makes piles of counters. He puts 3 counters in the first pile. Each successive pile he makes has 2 more counters in it than the previous one.
    1. How many counters are there in his sixth pile?
    2. André makes ten piles of counters. How many counters has he used altogether?
  2. In another game, played with an ordinary fair die and counters, Betty needs to throw a six to start. The probability \(\mathrm { P } _ { n }\) of Betty starting on her \(n\)th throw is given by $$P _ { n } = \frac { 1 } { 6 } \times \left( \frac { 5 } { 6 } \right) ^ { n - 1 }$$
    1. Calculate \(\mathrm { P } _ { 4 }\). Give your answer as a fraction.
    2. The values \(\mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } , \ldots\) form an infinite geometric progression. State the first term and the common ratio of this progression. Hence show that \(\mathrm { P } _ { 1 } + \mathrm { P } _ { 2 } + \mathrm { P } _ { 3 } + \ldots = 1\).
    3. Given that \(\mathrm { P } _ { n } < 0.001\), show that \(n\) satisfies the inequality $$n > \frac { \log _ { 10 } 0.006 } { \log _ { 10 } \left( \frac { 5 } { 6 } \right) } + 1$$ Hence find the least value of \(n\) for which \(\mathrm { P } _ { n } < 0.001\).
Question 5
View details
5 The first term of a geometric series is 8. The sum to infinity of the series is 10 .
Find the common ratio.