OCR MEI C2 — Question 3 5 marks

Exam BoardOCR MEI
ModuleC2 (Core Mathematics 2)
Marks5
TopicArea Under & Between Curves

3
  1. A tunnel is 100 m long. Its cross-section, shown in Fig. 9.1, is modelled by the curve $$y = \frac { 1 } { 4 } \left( 10 x - x ^ { 2 } \right) ,$$ where \(x\) and \(y\) are horizontal and vertical distances in metres. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1a6d059d-8ab8-41e0-8bf3-54e248f820e4-3_512_819_493_700} \captionsetup{labelformat=empty} \caption{Figure 9.1}
    \end{figure} Using this model,
    (A) find the greatest height of the tunnel,
    (B) explain why \(100 \int _ { 0 } ^ { 10 } y \mathrm {~d} x\) gives the volume, in cubic metres, of earth removed to make the tunnel. Calculate this volume.
    [0pt] [5]
  2. The roof of the tunnel is re-shaped to allow for larger vehicles. Fig. 9.2 shows the new crosssection. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1a6d059d-8ab8-41e0-8bf3-54e248f820e4-3_506_942_1703_629} \captionsetup{labelformat=empty} \caption{Not to scale}
    \end{figure} Fig. 9.2 Use the trapezium rule with 5 strips to estimate the new cross-sectional area.
    Hence estimate the volume of earth removed when the tunnel is re-shaped.
This paper (3 questions)
View full paper