OCR MEI C2 (Core Mathematics 2)

Question 1
View details
1
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1a6d059d-8ab8-41e0-8bf3-54e248f820e4-1_650_759_252_762} \captionsetup{labelformat=empty} \caption{Fig. 12}
    \end{figure} Fig. 12 shows part of the curve \(y = x ^ { 4 }\) and the line \(y = 8 x\), which intersect at the origin and the point P .
    (A) Find the coordinates of P , and show that the area of triangle OPQ is 16 square units.
    (B) Find the area of the region bounded by the line and the curve.
  2. You are given that \(\mathrm { f } ( x ) = x ^ { 4 }\).
    (A) Complete this identity for \(\mathrm { f } ( x + h )\). $$\mathrm { f } ( x + h ) = ( x + h ) ^ { 4 } = x ^ { 4 } + 4 x ^ { 3 } h + \ldots$$ (B) Simplify \(\frac { \mathrm { f } ( x + h ) - \mathrm { f } ( x ) } { h }\).
    (C) Find \(\lim _ { h \rightarrow 0 } \frac { \mathrm { f } ( x + h ) - \mathrm { f } ( x ) } { h }\).
    (D) State what this limit represents.
Question 2 5 marks
View details
2 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1a6d059d-8ab8-41e0-8bf3-54e248f820e4-2_622_979_232_553} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Fig. 4 shows a curve which passes through the points shown in the following table.
\(x\)11.522.533.54
\(y\)8.26.45.55.04.74.44.2
Use the trapezium rule with 6 strips to estimate the area of the region bounded by the curve, the lines \(x = 1\) and \(x = 4\), and the \(x\)-axis. State, with a reason, whether the trapezium rule gives an overestimate or an underestimate of the area of this region.
[0pt] [5]
Question 3 5 marks
View details
3
  1. A tunnel is 100 m long. Its cross-section, shown in Fig. 9.1, is modelled by the curve $$y = \frac { 1 } { 4 } \left( 10 x - x ^ { 2 } \right) ,$$ where \(x\) and \(y\) are horizontal and vertical distances in metres. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1a6d059d-8ab8-41e0-8bf3-54e248f820e4-3_512_819_493_700} \captionsetup{labelformat=empty} \caption{Figure 9.1}
    \end{figure} Using this model,
    (A) find the greatest height of the tunnel,
    (B) explain why \(100 \int _ { 0 } ^ { 10 } y \mathrm {~d} x\) gives the volume, in cubic metres, of earth removed to make the tunnel. Calculate this volume.
    [0pt] [5]
  2. The roof of the tunnel is re-shaped to allow for larger vehicles. Fig. 9.2 shows the new crosssection. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1a6d059d-8ab8-41e0-8bf3-54e248f820e4-3_506_942_1703_629} \captionsetup{labelformat=empty} \caption{Not to scale}
    \end{figure} Fig. 9.2 Use the trapezium rule with 5 strips to estimate the new cross-sectional area.
    Hence estimate the volume of earth removed when the tunnel is re-shaped.