5.
\includegraphics[max width=\textwidth, alt={}, center]{5dd332a5-56d9-407a-8ff6-fa59294b358d-2_520_787_246_479}
The diagram shows the graph of \(y = \mathrm { f } ( x )\). The graph has a minimum at \(\left( \frac { \pi } { 2 } , - 1 \right)\), a maximum at \(\left( \frac { 3 \pi } { 2 } , - 5 \right)\) and an asymptote with equation \(x = \pi\).
- Showing the coordinates of any stationary points, sketch the graph of \(y = | \mathrm { f } ( x ) |\).
Given that
$$\mathrm { f } : x \rightarrow a + b \operatorname { cosec } x , \quad x \in \mathbb { R } , \quad 0 < x < 2 \pi , \quad x \neq \pi$$
- find the values of the constants \(a\) and \(b\),
- find, to 2 decimal places, the \(x\)-coordinates of the points where the graph of \(y = \mathrm { f } ( x )\) crosses the \(x\)-axis.