OCR C3 (Core Mathematics 3)

Question 1
View details
  1. (i) Show that
$$\sin ( x + 30 ) ^ { \circ } + \sin ( x - 30 ) ^ { \circ } \equiv a \sin x ^ { \circ }$$ where \(a\) is a constant to be found.
(ii) Hence find the exact value of \(\sin 75 ^ { \circ } + \sin 15 ^ { \circ }\), giving your answer in the form \(b \sqrt { 6 }\).
Question 2
View details
2. Solve each equation, giving your answers in exact form.
  1. \(\quad \ln ( 2 x - 3 ) = 1\)
  2. \(3 \mathrm { e } ^ { y } + 5 \mathrm { e } ^ { - y } = 16\)
Question 3
View details
3. The curve \(C\) has the equation \(y = 2 \mathrm { e } ^ { x } - 6 \ln x\) and passes through the point \(P\) with \(x\)-coordinate 1.
  1. Find an equation for the tangent to \(C\) at \(P\). The tangent to \(C\) at \(P\) meets the coordinate axes at the points \(Q\) and \(R\).
  2. Show that the area of triangle \(O Q R\), where \(O\) is the origin, is \(\frac { 9 } { 3 - \mathrm { e } }\).
Question 4
View details
4. The finite region \(R\) is bounded by the curve with equation \(y = \frac { 1 } { 2 x - 1 }\), the \(x\)-axis and the lines \(x = 1\) and \(x = 2\).
  1. Find the exact area of \(R\).
  2. Show that the volume of the solid formed when \(R\) is rotated through four right angles about the \(x\)-axis is \(\frac { 1 } { 3 } \pi\).
Question 5
View details
5.
\includegraphics[max width=\textwidth, alt={}, center]{5dd332a5-56d9-407a-8ff6-fa59294b358d-2_520_787_246_479} The diagram shows the graph of \(y = \mathrm { f } ( x )\). The graph has a minimum at \(\left( \frac { \pi } { 2 } , - 1 \right)\), a maximum at \(\left( \frac { 3 \pi } { 2 } , - 5 \right)\) and an asymptote with equation \(x = \pi\).
  1. Showing the coordinates of any stationary points, sketch the graph of \(y = | \mathrm { f } ( x ) |\). Given that $$\mathrm { f } : x \rightarrow a + b \operatorname { cosec } x , \quad x \in \mathbb { R } , \quad 0 < x < 2 \pi , \quad x \neq \pi$$
  2. find the values of the constants \(a\) and \(b\),
  3. find, to 2 decimal places, the \(x\)-coordinates of the points where the graph of \(y = \mathrm { f } ( x )\) crosses the \(x\)-axis.
Question 6
View details
6. (i) Prove the identity $$2 \cot 2 x + \tan x \equiv \cot x , \quad x \neq \frac { n } { 2 } \pi , \quad n \in \mathbb { Z }$$ (ii) Solve, for \(0 \leq x < \pi\), the equation $$2 \cot 2 x + \tan x = \operatorname { cosec } ^ { 2 } x - 7$$ giving your answers to 2 decimal places.
Question 7
View details
7. The function \(f\) is defined by $$\mathrm { f } : x \rightarrow 3 \mathrm { e } ^ { x - 1 } , \quad x \in \mathbb { R }$$
  1. State the range of f .
  2. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\) and state its domain. The function \(g\) is defined by $$g : x \rightarrow 5 x - 2 , \quad x \in \mathbb { R }$$ Find, in terms of e,
  3. the value of \(\mathrm { gf } ( \ln 2 )\),
  4. the solution of the equation $$\mathrm { f } ^ { - 1 } \mathrm {~g} ( x ) = 4$$
Question 8
View details
  1. A curve has the equation \(y = x ^ { 2 } - \sqrt { 4 + \ln x }\).
    1. Show that the tangent to the curve at the point where \(x = 1\) has the equation
    $$7 x - 4 y = 11$$ The curve has a stationary point with \(x\)-coordinate \(\alpha\).
  2. Show that \(0.3 < \alpha < 0.4\)
  3. Show that \(\alpha\) is a solution of the equation $$x = \frac { 1 } { 2 } ( 4 + \ln x ) ^ { - \frac { 1 } { 4 } }$$
  4. Use the iterative formula $$x _ { n + 1 } = \frac { 1 } { 2 } \left( 4 + \ln x _ { n } \right) ^ { - \frac { 1 } { 4 } }$$ with \(x _ { 0 } = 0.35\), to find \(\alpha\) correct to 5 decimal places.
    You should show the result of each iteration.