OCR C3 (Core Mathematics 3)

Question 1
View details
  1. Evaluate
$$\int _ { 2 } ^ { 15 } \frac { 1 } { \sqrt [ 3 ] { 2 x - 3 } } d x$$
Question 2
View details
2.
\includegraphics[max width=\textwidth, alt={}]{49d985bf-7c94-4a54-88c1-c0084cd94000-1_563_833_532_513}
The diagram shows the curve with equation \(y = \frac { 3 x + 1 } { \sqrt { x } } , x > 0\).
The shaded region is bounded by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = 3\).
Find the volume of the solid formed when the shaded region is rotated through four right angles about the \(x\)-axis, giving your answer in the form \(\pi ( a + \ln b )\), where \(a\) and \(b\) are integers.
Question 3
View details
3. A curve has the equation \(y = ( 3 x - 5 ) ^ { 3 }\).
  1. Find an equation for the tangent to the curve at the point \(P ( 2,1 )\). The tangent to the curve at the point \(Q\) is parallel to the tangent at \(P\).
  2. Find the coordinates of \(Q\).
Question 4
View details
4. Giving your answers to 2 decimal places, solve the simultaneous equations $$\begin{aligned} & \mathrm { e } ^ { 2 y } - x + 2 = 0
& \ln ( x + 3 ) - 2 y - 1 = 0 \end{aligned}$$
Question 5
View details
  1. (i) Find the exact value of \(x\) such that
$$3 \tan ^ { - 1 } ( x - 2 ) + \pi = 0$$ (ii) Solve, for \(- \pi < \theta < \pi\), the equation $$\cos 2 \theta - \sin \theta - 1 = 0$$ giving your answers in terms of \(\pi\).
Question 6
View details
6. The functions \(f\) and \(g\) are defined by $$\begin{aligned} & \mathrm { f } : x \rightarrow 3 x - 4 , \quad x \in \mathbb { R } ,
& \mathrm {~g} : x \rightarrow \frac { 2 } { x + 3 } , \quad x \in \mathbb { R } , \quad x \neq - 3 \end{aligned}$$
  1. Evaluate fg(1).
  2. Solve the equation \(\operatorname { gf } ( x ) = 6\).
  3. Find an expression for \(\mathrm { g } ^ { - 1 } ( x )\).
Question 7
View details
7. (i) Express \(2 \sin x ^ { \circ } - 3 \cos x ^ { \circ }\) in the form \(R \sin ( x - \alpha ) ^ { \circ }\) where \(R > 0\) and \(0 < \alpha < 90\).
(ii) Show that the equation $$\operatorname { cosec } x ^ { \circ } + 3 \cot x ^ { \circ } = 2$$ can be written in the form $$2 \sin x ^ { \circ } - 3 \cos x ^ { \circ } = 1$$ (iii) Solve the equation $$\operatorname { cosec } x ^ { \circ } + 3 \cot x ^ { \circ } = 2$$ for \(x\) in the interval \(0 \leq x \leq 360\), giving your answers to 1 decimal place.
Question 8
View details
8. The functions f and g are defined for all real values of \(x\) by $$\begin{aligned} & \mathrm { f } : x \rightarrow | x - 3 a |
& \mathrm { g } : x \rightarrow | 2 x + a | \end{aligned}$$ where \(a\) is a positive constant.
  1. Evaluate fg(-2a).
  2. Sketch on the same diagram the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\), showing the coordinates of any points where each graph meets the coordinate axes.
  3. Solve the equation $$\mathrm { f } ( x ) = \mathrm { g } ( x )$$
Question 9
View details
9.
\includegraphics[max width=\textwidth, alt={}]{49d985bf-7c94-4a54-88c1-c0084cd94000-3_485_945_1119_447}
The diagram shows the curve with equation \(y = 2 x - 3 \ln ( 2 x + 5 )\) and the normal to the curve at the point \(P ( - 2 , - 4 )\).
  1. Find an equation for the normal to the curve at \(P\). The normal to the curve at \(P\) intersects the curve again at the point \(Q\) with \(x\)-coordinate \(q\).
  2. Show that \(1 < q < 2\).
  3. Show that \(q\) is a solution of the equation $$x = \frac { 12 } { 7 } \ln ( 2 x + 5 ) - 2 .$$
  4. Use an iterative process based on the equation above with a starting value of 1.5 to find the value of \(q\) to 3 significant figures and justify the accuracy of your answer.