1 In a certain country, any baby born is equally likely to be a boy or a girl, independently for all births. The birthweight of a baby boy is given by the continuous random variable \(X _ { B }\) with probability density function (pdf) \(\mathrm { f } _ { B } ( x )\) and cumulative distribution function (cdf) \(\mathrm { F } _ { B } ( x )\). The birthweight of a baby girl is given by the continuous random variable \(X _ { G }\) with pdf \(\mathrm { f } _ { G } ( x )\) and cdf \(\mathrm { F } _ { G } ( x )\).
The continuous random variable \(X\) denotes the birthweight of a baby selected at random.
- By considering
$$\mathrm { P } ( X \leqslant x ) = \mathrm { P } ( X \leqslant x \mid \text { boy } ) \mathrm { P } ( \text { boy } ) + \mathrm { P } ( X \leqslant x \mid \text { girl } ) \mathrm { P } ( \text { girl } ) ,$$
find the cdf of \(X\) in terms of \(\mathrm { F } _ { B } ( x )\) and \(\mathrm { F } _ { G } ( x )\), and deduce that the pdf of \(X\) is
$$\mathrm { f } ( x ) = \frac { 1 } { 2 } \left\{ \mathrm { f } _ { B } ( x ) + \mathrm { f } _ { G } ( x ) \right\} .$$
- The birthweights of baby boys and girls have means \(\mu _ { B }\) and \(\mu _ { G }\) respectively. Deduce that
$$\mathrm { E } ( X ) = \frac { 1 } { 2 } \left( \mu _ { B } + \mu _ { G } \right) .$$
- The birthweights of baby boys and girls have common variance \(\sigma ^ { 2 }\). Find an expression for \(\mathrm { E } \left( X ^ { 2 } \right)\) in terms of \(\mu _ { B } , \mu _ { G }\) and \(\sigma ^ { 2 }\), and deduce that
$$\operatorname { Var } ( X ) = \sigma ^ { 2 } + \frac { 1 } { 4 } \left( \mu _ { B } - \mu _ { G } \right) ^ { 2 } .$$
- A random sample of size \(2 n\) is taken from all the babies born in a certain period. The mean birthweight of the babies in this sample is \(\bar { X }\). Write down an approximation to the sampling distribution of \(\bar { X }\) if \(n\) is large.
- Suppose instead that a stratified sample of size \(2 n\) is taken by selecting \(n\) baby boys at random and, independently, \(n\) baby girls at random. The mean birthweight of the \(2 n\) babies in this sample is \(\bar { X } _ { s t }\). Write down the expected value of \(\bar { X } _ { s t }\) and find the variance of \(\bar { X } _ { s t }\).
- Deduce that both \(\bar { X }\) and \(\bar { X } _ { s t }\) are unbiased estimators of the population mean birthweight. Find which is the more efficient.