A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q6
CAIE P2 2023 November — Question 6
Exam Board
CAIE
Module
P2 (Pure Mathematics 2)
Year
2023
Session
November
Topic
Reciprocal Trig & Identities
6
Show that \(\operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) \equiv 4 + 6 \cos \theta - 4 \cos ^ { 2 } \theta\).
Solve the equation $$\operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) + 3 = 0$$ for \(- \pi < \theta < 0\).
Find \(\int \operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) \mathrm { d } \theta\).
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7