Solve the simultaneous equations \(y = x ^ { 2 } - 5 x + 6\) and \(x + y = 2\). Hence show that the line \(x + y = 2\) is a tangent to the curve \(y = x ^ { 2 } - 5 x + 6\) at one of the points where the curve intersects the axes. [4]
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{973ad9eb-33f2-432e-9449-e54c1728008b-1_1292_1401_887_359}
\captionsetup{labelformat=empty}
\caption{Fig. 12}
\end{figure}
Fig. 12 shows the graph of \(y = \frac { 1 } { x - 3 }\).