OCR MEI C1 (Core Mathematics 1)

Question 1 9 marks
View details
1
  1. Express \(x ^ { 2 } - 5 x + 6\) in the form \(( x - a ) ^ { 2 } - b\). Hence state the coordinates of the turning point of the curve \(y = x ^ { 2 } - 5 x + 6\).
  2. Find the coordinates of the intersections of the curve \(y = x ^ { 2 } - 5 x + 6\) with the axes and sketch this curve.
  3. Solve the simultaneous equations \(y = x ^ { 2 } - 5 x + 6\) and \(x + y = 2\). Hence show that the line \(x + y = 2\) is a tangent to the curve \(y = x ^ { 2 } - 5 x + 6\) at one of the points where the curve intersects the axes. [4] \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{973ad9eb-33f2-432e-9449-e54c1728008b-1_1292_1401_887_359} \captionsetup{labelformat=empty} \caption{Fig. 12}
    \end{figure} Fig. 12 shows the graph of \(y = \frac { 1 } { x - 3 }\).
  4. Draw accurately, on the copy of Fig. 12, the graph of \(y = x ^ { 2 } - 4 x + 1\) for \(- 1 \leqslant x \leqslant 5\). Use your graph to estimate the coordinates of the intersections of \(y = \frac { 1 } { x - 3 }\) and \(y = x ^ { 2 } - 4 x + 1\).
  5. Show algebraically that, where the curves intersect, \(x ^ { 3 } - 7 x ^ { 2 } + 13 x - 4 = 0\).
  6. Use the fact that \(x = 4\) is a root of \(x ^ { 3 } - 7 x ^ { 2 } + 13 x - 4 = 0\) to find a quadratic factor of \(x ^ { 3 } - 7 x ^ { 2 } + 13 x - 4\). Hence find the exact values of the other two roots of this equation. [5]
  7. Find algebraically the coordinates of the points of intersection of the curve \(y = 4 x ^ { 2 } + 24 x + 31\) and the line \(x + y = 10\).
  8. Express \(4 x ^ { 2 } + 24 x + 31\) in the form \(a ( x + b ) ^ { 2 } + c\).
  9. For the curve \(y = 4 x ^ { 2 } + 24 x + 31\),
    (A) write down the equation of the line of symmetry,
    (B) write down the minimum \(y\)-value on the curve.
Question 4
View details
4
  1. Solve, by factorising, the equation \(2 x ^ { 2 } - x - 3 = 0\).
  2. Sketch the graph of \(y = 2 x ^ { 2 } - x - 3\).
  3. Show that the equation \(x ^ { 2 } - 5 x + 10 = 0\) has no real roots.
  4. Find the \(x\)-coordinates of the points of intersection of the graphs of \(y = 2 x ^ { 2 } - x - 3\) and \(y = x ^ { 2 } - 5 x + 10\). Give your answer in the form \(a \pm \sqrt { b }\).