Express \(x ^ { 2 } - 6 x + 2\) in the form \(( x - a ) ^ { 2 } - b\).
State the coordinates of the turning point on the graph of \(y = x ^ { 2 } - 6 x + 2\).
Sketch the graph of \(y = x ^ { 2 } - 6 x + 2\). You need not state the coordinates of the points where the graph intersects the \(x\)-axis.
Solve the simultaneous equations \(y = x ^ { 2 } - 6 x + 2\) and \(y = 2 x - 14\). Hence show that the line \(y = 2 x - 14\) is a tangent to the curve \(y = x ^ { 2 } - 6 x + 2\).