OCR MEI C1 (Core Mathematics 1)

Question 1
View details
1 Find the equation of the line passing through \(( - 1 , - 9 )\) and \(( 3,11 )\). Give your answer in the form \(y = m x + c\).
Question 3
View details
3
  1. Express \(x ^ { 2 } - 6 x + 2\) in the form \(( x - a ) ^ { 2 } - b\).
  2. State the coordinates of the turning point on the graph of \(y = x ^ { 2 } - 6 x + 2\).
  3. Sketch the graph of \(y = x ^ { 2 } - 6 x + 2\). You need not state the coordinates of the points where the graph intersects the \(x\)-axis.
  4. Solve the simultaneous equations \(y = x ^ { 2 } - 6 x + 2\) and \(y = 2 x - 14\). Hence show that the line \(y = 2 x - 14\) is a tangent to the curve \(y = x ^ { 2 } - 6 x + 2\).
Question 5
View details
5
  1. Find the gradient of the line \(4 x + 5 y = 24\).
  2. A line parallel to \(4 x + 5 y = 24\) passes through the point \(( 0,12 )\). Find the coordinates of its point of intersection with the \(x\)-axis.
Question 6
View details
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{9106e6b2-0b36-4ebf-ace3-a30570df73d3-2_754_780_317_763} \captionsetup{labelformat=empty} \caption{Fig. 10}
    \end{figure} Fig. 10 shows a sketch of the graph of \(y = \frac { 1 } { x }\).
    Sketch the graph of \(y = \frac { 1 } { x - 2 }\), showing clearly the coordinates of any points where it crosses the axes.
  2. Find the value of \(x\) for which \(\frac { 1 } { x - 2 } = 5\).
  3. Find the \(x\)-coordinates of the points of intersection of the graphs of \(y = x\) and \(y = \frac { 1 } { x - 2 }\). Give your answers in the form \(a \pm \sqrt { b }\). Show the position of these points on your graph in part (i).
Question 7
View details
7 Find, in the form \(y = a x + b\), the equation of the line through \(( 3,10 )\) which is parallel to \(y = 2 x + 7\).