OCR S2 2008 January — Question 4

Exam BoardOCR
ModuleS2 (Statistics 2)
Year2008
SessionJanuary
TopicNormal Distribution
TypeEstimate from summary statistics

4 The random variable \(Y\) has the distribution \(\mathrm { N } \left( \mu , \sigma ^ { 2 } \right)\). The results of 40 independent observations of \(Y\) are summarised by $$\Sigma y = 3296.0 , \quad \Sigma y ^ { 2 } = 286800.40$$
  1. Calculate unbiased estimates of \(\mu\) and \(\sigma ^ { 2 }\).
  2. Use your answers to part (i) to estimate the probability that a single random observation of \(Y\) will be less than 60.0.
  3. Explain whether it is necessary to know that \(Y\) is normally distributed in answering part (i) of this question.