OCR MEI FP3 2013 June — Question 3

Exam BoardOCR MEI
ModuleFP3 (Further Pure Mathematics 3)
Year2013
SessionJune
TopicPolar coordinates

3
  1. Find the length of the arc of the polar curve \(r = a ( 1 + \cos \theta )\) for which \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  2. A curve \(C\) has cartesian equation \(y = \frac { x ^ { 3 } } { 6 } + \frac { 1 } { 2 x }\).
    1. The arc of \(C\) for which \(1 \leqslant x \leqslant 2\) is rotated through \(2 \pi\) radians about the \(x\)-axis to form a surface of revolution. Find the area of this surface. For the point on \(C\) at which \(x = 2\),
    2. show that the radius of curvature is \(\frac { 289 } { 64 }\),
    3. find the coordinates of the centre of curvature.