OCR MEI FP3 2012 June — Question 2

Exam BoardOCR MEI
ModuleFP3 (Further Pure Mathematics 3)
Year2012
SessionJune
TopicVectors: Lines & Planes

2 You are given that \(\mathrm { g } ( x , y , z ) = x ^ { 2 } + 2 y ^ { 2 } - z ^ { 2 } + 2 x z + 2 y z + 4 z - 3\).
  1. Find \(\frac { \partial \mathrm { g } } { \partial x } , \frac { \partial \mathrm {~g} } { \partial y }\) and \(\frac { \partial \mathrm { g } } { \partial z }\). The surface \(S\) has equation \(\mathrm { g } ( x , y , z ) = 0\), and \(\mathrm { P } ( - 2 , - 1,1 )\) is a point on \(S\).
  2. Find an equation for the normal line to the surface \(S\) at the point P .
  3. A point Q lies on this normal line and is close to P . At \(\mathrm { Q } , \mathrm { g } ( x , y , z ) = h\), where \(h\) is small. Find the constant \(c\) such that \(\mathrm { PQ } \approx c | h |\).
  4. Show that there is no point on \(S\) at which the normal line is parallel to the \(z\)-axis.
  5. Given that \(x + y + z = k\) is a tangent plane to the surface \(S\), find the two possible values of \(k\).