OCR MEI FP3 (Further Pure Mathematics 3) 2012 June

Question 1
View details
1 A mine contains several underground tunnels beneath a hillside. The hillside is a plane, all the tunnels are straight and the width of the tunnels may be neglected. A coordinate system is chosen with the \(z\)-axis pointing vertically upwards and the units are metres. Three points on the hillside have coordinates \(\mathrm { A } ( 15 , - 60,20 )\), \(B ( - 75,100,40 )\) and \(C ( 18,138,35.6 )\).
  1. Find the vector product \(\overrightarrow { \mathrm { AB } } \times \overrightarrow { \mathrm { AC } }\) and hence show that the equation of the hillside is \(2 x - 2 y + 25 z = 650\). The tunnel \(T _ { \mathrm { A } }\) begins at A and goes in the direction of the vector \(15 \mathbf { i } + 14 \mathbf { j } - 2 \mathbf { k }\); the tunnel \(T _ { \mathrm { C } }\) begins at C and goes in the direction of the vector \(8 \mathbf { i } + 7 \mathbf { j } - 2 \mathbf { k }\). Both these tunnels extend a long way into the ground.
  2. Find the least possible length of a tunnel which connects B to a point in \(T _ { \mathrm { A } }\).
  3. Find the least possible length of a tunnel which connects a point in \(T _ { \mathrm { A } }\) to a point in \(T _ { \mathrm { C } }\).
  4. A tunnel starts at B , passes through the point ( \(18,138 , p\) ) vertically below C , and intersects \(T _ { \mathrm { A } }\) at the point Q . Find the value of \(p\) and the coordinates of Q .
Question 2
View details
2 You are given that \(\mathrm { g } ( x , y , z ) = x ^ { 2 } + 2 y ^ { 2 } - z ^ { 2 } + 2 x z + 2 y z + 4 z - 3\).
  1. Find \(\frac { \partial \mathrm { g } } { \partial x } , \frac { \partial \mathrm {~g} } { \partial y }\) and \(\frac { \partial \mathrm { g } } { \partial z }\). The surface \(S\) has equation \(\mathrm { g } ( x , y , z ) = 0\), and \(\mathrm { P } ( - 2 , - 1,1 )\) is a point on \(S\).
  2. Find an equation for the normal line to the surface \(S\) at the point P .
  3. A point Q lies on this normal line and is close to P . At \(\mathrm { Q } , \mathrm { g } ( x , y , z ) = h\), where \(h\) is small. Find the constant \(c\) such that \(\mathrm { PQ } \approx c | h |\).
  4. Show that there is no point on \(S\) at which the normal line is parallel to the \(z\)-axis.
  5. Given that \(x + y + z = k\) is a tangent plane to the surface \(S\), find the two possible values of \(k\).
Question 3
View details
3 A curve has parametric equations $$x = a \left( 1 - \cos ^ { 3 } \theta \right) , \quad y = a \sin ^ { 3 } \theta , \quad \text { for } 0 \leqslant \theta \leqslant \frac { \pi } { 3 }$$ where \(a\) is a positive constant.
The arc length from the origin to a general point on the curve is denoted by \(s\), and \(\psi\) is the acute angle defined by \(\tan \psi = \frac { \mathrm { d } y } { \mathrm {~d} x }\).
  1. Express \(s\) and \(\psi\) in terms of \(\theta\), and hence show that the intrinsic equation of the curve is $$s = \frac { 3 } { 2 } a \sin ^ { 2 } \psi$$
  2. For the point on the curve given by \(\theta = \frac { \pi } { 6 }\), find the radius of curvature and the coordinates of the centre of curvature.
  3. Find the area of the curved surface generated when the curve is rotated through \(2 \pi\) radians about the \(y\)-axis.
Question 4
View details
4
  1. Show that the set \(P = \{ 1,5,7,11 \}\), under the binary operation of multiplication modulo 12, is a group. You may assume associativity. A group \(Q\) has identity element \(e\). The result of applying the binary operation of \(Q\) to elements \(x\) and \(y\) is written \(x y\), and the inverse of \(x\) is written \(x ^ { - 1 }\).
  2. Verify that the inverse of \(x y\) is \(y ^ { - 1 } x ^ { - 1 }\). Three elements \(a , b\) and \(c\) of \(Q\) all have order 2, and \(a b = c\).
  3. By considering the inverse of \(c\), or otherwise, show that \(b a = c\).
  4. Show that \(b c = a\) and \(a c = b\). Find \(c b\) and \(c a\).
  5. Complete the composition table for \(R = \{ e , a , b , c \}\). Hence show that \(R\) is a subgroup of \(Q\) and that \(R\) is isomorphic to \(P\). The group \(T\) of symmetries of a square contains four reflections \(A , B , C , D\), the identity transformation \(E\) and three rotations \(F , G , H\). The binary operation is composition of transformations. The composition table for \(T\) is given below.
    A\(B\)\(C\)D\(E\)\(F\)\(G\)\(H\)
    AE\(G\)\(H\)\(F\)\(A\)D\(B\)\(C\)
    BGE\(F\)\(H\)\(B\)CAD
    C\(F\)HEGCAD\(B\)
    D\(H\)\(F\)\(G\)E\(D\)\(B\)C\(A\)
    EA\(B\)CD\(E\)\(F\)\(G\)\(H\)
    FCD\(B\)A\(F\)G\(H\)\(E\)
    \(G\)B\(A\)\(D\)C\(G\)HE\(F\)
    \(H\)DCAB\(H\)E\(F\)G
  6. Find the order of each element of \(T\).
  7. List all the proper subgroups of \(T\).