OCR MEI FP3 2008 June — Question 4

Exam BoardOCR MEI
ModuleFP3 (Further Pure Mathematics 3)
Year2008
SessionJune
TopicGroups

4 A binary operation * is defined on real numbers \(x\) and \(y\) by $$x * y = 2 x y + x + y$$ You may assume that the operation \(*\) is commutative and associative.
  1. Explain briefly the meanings of the terms 'commutative' and 'associative'.
  2. Show that \(x * y = 2 \left( x + \frac { 1 } { 2 } \right) \left( y + \frac { 1 } { 2 } \right) - \frac { 1 } { 2 }\). The set \(S\) consists of all real numbers greater than \(- \frac { 1 } { 2 }\).
  3. (A) Use the result in part (ii) to show that \(S\) is closed under the operation *.
    (B) Show that \(S\), with the operation \(*\), is a group.
  4. Show that \(S\) contains no element of order 2 . The group \(G = \{ 0,1,2,4,5,6 \}\) has binary operation ∘ defined by $$x \circ y \text { is the remainder when } x * y \text { is divided by } 7 \text {. }$$
  5. Show that \(4 \circ 6 = 2\). The composition table for \(G\) is as follows.
    \(\circ\)012456
    0012456
    1140625
    2205164
    4461502
    5526041
    6654210
  6. Find the order of each element of \(G\).
  7. List all the subgroups of \(G\).