OCR MEI S1 2008 June — Question 3

Exam BoardOCR MEI
ModuleS1 (Statistics 1)
Year2008
SessionJune
TopicDiscrete Probability Distributions
TypeTwo unknowns from sum and expectation

3 In a game of darts, a player throws three darts. Let \(X\) represent the number of darts which hit the bull's-eye. The probability distribution of \(X\) is shown in the table.
\(r\)0123
\(\mathrm { P } ( X = r )\)0.50.35\(p\)\(q\)
  1. (A) Show that \(p + q = 0.15\).
    (B) Given that the expectation of \(X\) is 0.67 , show that \(2 p + 3 q = 0.32\).
    (C) Find the values of \(p\) and \(q\).
  2. Find the variance of \(X\).