OCR FP3 2007 June — Question 9

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2007
SessionJune
TopicGroups

9 The set \(S\) consists of the numbers \(3 ^ { n }\), where \(n \in \mathbb { Z }\). ( \(\mathbb { Z }\) denotes the set of integers \(\{ 0 , \pm 1 , \pm 2 , \ldots \}\).)
  1. Prove that the elements of \(S\), under multiplication, form a commutative group \(G\). (You may assume that addition of integers is associative and commutative.)
  2. Determine whether or not each of the following subsets of \(S\), under multiplication, forms a subgroup of \(G\), justifying your answers.
    (a) The numbers \(3 ^ { 2 n }\), where \(n \in \mathbb { Z }\).
    (b) The numbers \(3 ^ { n }\), where \(n \in \mathbb { Z }\) and \(n \geqslant 0\).
    (c) The numbers \(3 ^ { \left( \pm n ^ { 2 } \right) }\), where \(n \in \mathbb { Z }\). 4