OCR FP3 2008 January — Question 3

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2008
SessionJanuary
TopicVectors: Lines & Planes

3 Two fixed points, \(A\) and \(B\), have position vectors \(\mathbf { a }\) and \(\mathbf { b }\) relative to the origin \(O\), and a variable point \(P\) has position vector \(\mathbf { r }\).
  1. Give a geometrical description of the locus of \(P\) when \(\mathbf { r }\) satisfies the equation \(\mathbf { r } = \lambda \mathbf { a }\), where \(0 \leqslant \lambda \leqslant 1\).
  2. Given that \(P\) is a point on the line \(A B\), use a property of the vector product to explain why \(( \mathbf { r } - \mathbf { a } ) \times ( \mathbf { r } - \mathbf { b } ) = \mathbf { 0 }\).
  3. Give a geometrical description of the locus of \(P\) when \(\mathbf { r }\) satisfies the equation \(\mathbf { r } \times ( \mathbf { a } - \mathbf { b } ) = \mathbf { 0 }\).